Exercise 57

(a) Prove that the equation has at least one real root. (b) Use your calculator to find an interval of length 0.01 that contains a root.

$$
\cos x=x^{3}
$$

Solution

Bring both terms to the same side.

$$
\cos x-x^{3}=0
$$

The function $f(x)=\cos x-x^{3}$ is continuous everywhere because it's the difference of two functions known to be continuous everywhere, a trigonometric function and a polynomial function.

$$
f(x)=0
$$

Find a value of x for which the function is negative, and find a value of x for which the function is positive.

$$
\begin{aligned}
& f(0)=1 \\
& f(1) \approx-0.460
\end{aligned}
$$

$f(x)$ is continuous on the closed interval $[0,1]$, and $N=0$ lies between $f(0)$ and $f(1)$. By the Intermediate Value Theorem, then, there exists a root within $0<x<1$. Find other values of x within this interval for which the function is negative and positive.

$$
\begin{aligned}
& f(0.8) \approx 0.185 \\
& f(0.9) \approx-0.107
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [0.8, 0.9], and $N=0$ lies between $f(0.8)$ and $f(0.9)$. By the Intermediate Value Theorem, then, there exists a root within $0.8<x<0.9$. Find other values of x within this interval for which the function is negative and positive.

$$
\begin{aligned}
& f(0.86) \approx 0.0164 \\
& f(0.87) \approx-0.0137
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [0.86, 0.87], and $N=0$ lies between $f(0.86)$ and $f(0.87)$. By the Intermediate Value Theorem, then, there exists a root within $0.86<x<0.87$.

